Comparing Ceramic Brackets With Other Invisible Options

Comparing Ceramic Brackets With Other Invisible Options

**Desire for Improved Aesthetics**: Many adults seek orthodontic treatment to enhance the appearance of their smile, addressing concerns such as crooked teeth, gaps, or overbites that may have persisted from childhood or developed due to various life factors.

When we delve into the world of orthodontic treatments, the quest for both functionality and aesthetics becomes paramount, especially for those who are conscious about their appearance during treatment. Among the various options available, ceramic brackets have carved out a niche for themselves, offering a unique blend of performance and subtlety that appeals to many. To truly appreciate these brackets, let's explore their composition, appearance, performance, and particularly highlight how their semi-transparent nature sets them apart from traditional metal braces and other invisible alternatives.


Composition and Appearance:


Ceramic brackets are primarily composed of high-quality ceramic materials that are meticulously designed to withstand the rigors of daily oral functions-chewing, speaking, and brushing-while maintaining their aesthetic appeal. Unlike their metal counterparts, which are typically made from stainless steel or titanium alloys, ceramic brackets boast a more natural look due to their ability to mimic tooth color. This is achieved through precise engineering and sometimes by adding subtle shades or coatings that help them blend seamlessly with the surrounding teeth. Clear aligners are an option for some kids needing orthodontic care Early orthodontic intervention medicine.


The semi-transparent nature of ceramic brackets is one of their most celebrated features. This transparency allows light to pass through them to some extent, giving them an almost ethereal quality that traditional metal braces lack. When attached to teeth, they don't starkly contrast with the enamel; instead, they offer a more harmonious visual integration. This aesthetic advantage is particularly significant for adults and teenagers who might feel self-conscious about visible braces on their smiles. Imagine wearing something that corrects your bite yet allows your smile to shine through almost unobstructed-that's the beauty of ceramic brackets.


Performance:


Despite their appealing aesthetic qualities, it's crucial not to overlook the performance aspect of ceramic brackets. They are crafted to be robust yet gentle on teeth and gums. Ceramic's biocompatibility ensures minimal irritation compared to some metals used in traditional braces. Moreover, advancements in orthodontic technology have led to improvements in the bond strength of ceramic brackets to tooth enamel, ensuring reliable holding power throughout treatment durations which can range from several months to over a year depending on individual needs.


However, there are nuances in performance worth noting. While ceramic brackets excel in aesthetics and comfort against metal alternatives, they sometimes require a bit more care regarding food choices-hard or sticky foods can potentially damage them more easily than metal ones due to their slightly more delicate structure despite being strong overall. Additionally, while progress has been made in reducing friction (which affects how quickly braces can move teeth), some users might find that ceramic braces could be marginally less efficient than newer invisible aligner options like Invisalign in certain complex cases requiring significant tooth movement or alignment adjustments. Yet for many common orthodontic issues-overcrowding, mild misalignments-they perform admirably well and often provide results comparable to metal braces but with enhanced discretion.


Comparing Ceramic Brackets With Other Invisible Options:


When discussing "invisible" orthodontic options beyond ceramic brackets, one prominent competitor is clear aligners such as Invisalign or ClearCorrect. These systems utilize custom-made plastic trays that fit snugly over your teeth without any metallic components at all-these are arguably even more invisible than ceramic brackets since they're removable for eating and cleaning. However, aligners rely heavily on patient compliance for effectiveness; they must be worn consistently (around

**Boosting Self-Confidence**: Orthodontic treatment can significantly improve an adult's self-esteem and confidence by correcting dental imperfections, leading to a more positive self-image and better social interactions. —

When it comes to orthodontic treatments, particularly for children and teenagers, the choice between different options can significantly influence both the aesthetic and comfort aspects of undergoing treatment. Among the variety of solutions available, clear aligners, like Invisalign, and ceramic brackets stand out as two popular choices. Let's delve into a comparative analysis focusing on visibility, comfort, treatment effectiveness, and suitability for various orthodontic issues in children, painting a picture of how these two options stack up against each other.


Visibility: One of the most immediate differences between clear aligners and ceramic brackets lies in their visibility. Clear aligners are virtually invisible when worn; they're made from transparent plastic material that fits snugly over your teeth without drawing attention to the fact that you're wearing them. This makes them a favorite among those who want to maintain a more natural look during treatment. On the other hand, ceramic brackets are significantly more visible than their metal counterparts due to their tooth-colored design. Though less conspicuous than traditional metal braces, they still stand out more than clear aligners do. For kids concerned about appearance during school years or social events, this visibility factor can be quite pivotal.


Comfort: When considering comfort, both clear aligners and ceramic brackets have distinct advantages and potential downsides. Clear aligners are often praised for their comfort because they don't have sharp edges or bulky components that can irritate gums or cheeks-something common with metal braces. They're also removable, allowing for easier cleaning and the ability to enjoy foods without restriction (within reason). Ceramic brackets offer a compromise here; while generally smoother than metal braces and thus less irritating to soft tissues, they can still cause some discomfort initially as teeth adjust to the pressure applied for movement. Additionally, although ceramic brackets are tooth-colored, they might occasionally harbor plaque more easily due to their slightly rougher surface compared to smooth metal or transparent aligners, which could affect oral hygiene comfort over time.


Treatment Effectiveness: Both clear aligners and ceramic brackets are effective at treating a broad spectrum of orthodontic issues-from mild crowding to complex bites-but their effectiveness can vary based on specific cases. Clear aligners excel in situations where tooth movement is primarily about alignment rather than complex structural changes needed by teeth with deep roots or significant misalignments. They work through a series of custom-made trays that gradually shift teeth into place without direct bonding to individual teeth. Ceramic brackets offer versatility in addressing more complex cases as well but require attachment directly to each tooth with bonds that can be less flexible than aligner technology in certain maneuvers. However, advancements in orthodontic techniques mean that ceramic brackets are increasingly used effectively across diverse cases thanks to smaller sizes and improved bonding agents enhancing hold and precision.


Suitability for Various Orthodontic Issues in Children: When it comes to suitability for children specifically, both options have merits but differ slightly in approach and consideration factors. Clear aligners might be preferable for pre-teens concerned about aesthetics or those requiring minimal adjustments since they allow for easier maintenance of oral hygiene-a crucial aspect during growth years when oral health is paramount. However, younger children might find removable aligners challenging given adherence required for effective treatment (typically wearing them 22 hours daily). Ceramic brackets could be favored in cases where extensive adjustments are necessary early on because once bonded, they provide consistent force application ideal

**Enhancing Oral Health**: Proper alignment of teeth through orthodontic treatment can improve oral hygiene by making it easier to clean teeth effectively, thereby reducing the risk of cavities and gum disease that may have been challenging to manage in misaligned dentitions.

When considering orthodontic treatments, the quest for aesthetics and discretion has led to significant advancements, with lingual braces emerging as a sophisticated option that aligns closely with the modern individual's desire for invisible solutions. To truly appreciate the nuances of lingual braces, it's beneficial to contrast them with more conventional options like ceramic brackets, delving into their unique characteristics, advantages, and potential drawbacks.


Lingual Braces: The Hidden Aligner of Teeth


Lingual braces are essentially traditional metal braces but with a clever twist-they're placed on the tongue side of your teeth. This unique positioning makes them virtually invisible from the front, offering a compelling solution for those who prioritize discretion while undergoing orthodontic treatment. The customization involved in fitting lingual braces is meticulous; each bracket and wire are tailored to fit the specific contours of your teeth from this less visible side. This precision not only enhances their invisibility but also ensures effective movement of teeth toward desired alignment and occlusion.


Pros of Lingual Braces


One of the most appealing aspects of lingual braces is their aesthetic advantage. For individuals concerned about the visibility of braces-whether at work, school, or social gatherings-these hidden braces offer peace of mind and confidence. Beyond aesthetics, they function similarly to traditional brackets, capable of addressing a wide range of dental issues including overcrowding, spacing, and complex malocclusions. Additionally, because they're custom-fitted to each patient's mouth, they can be highly effective in achieving precise results.


However, alongside these benefits come certain considerations that potential patients should weigh carefully.


Cons: Speech Difficulties and Cost


Speech interference is perhaps one of the most notable challenges associated with lingual braces. Because they sit on the tongue side of teeth, adjusting to speaking can initially be difficult for many wearers. Sounds such as "s," "z," "t," and "d" might take some practice to articulate clearly again post-installation. While many adapt over time-often within a few weeks-this adjustment period can be frustrating for some patients.


Moreover, cost stands as another significant factor distinguishing lingual braces from other options like ceramic brackets. Due to their complexity in fabrication and installation-a process requiring specialized training and equipment-they tend to be more expensive than both traditional metal and ceramic brackets. This higher cost reflects not only the materials used but also the expertise needed to ensure proper fit and effective treatment outcomes.


Ceramic Brackets: A Comparative Glance


In stark contrast stand ceramic brackets-a popular alternative that strikes a balance between visibility and functionality. These brackets are made from tooth-colored materials that significantly reduce their visibility compared to metal ones but are placed on the front surface of teeth like traditional braces. Ceramic brackets offer a compromise for those seeking less obvious treatment without resorting to entirely invisible options like lingual braces. They generally cause fewer speech difficulties than lingual braces due to their placement but may still attract some notice due to their color contrast against darker teeth or food stains-which can be mitigated by choosing clear or tooth-colored ceramics aligned with one's natural tooth shade as closely as possible.


Ceramic brackets usually come at a lower price point than lingual ones but are still more costly than traditional metal braces due to material costs and craft

**Addressing Chronic Dental Issues**: Adults may seek orthodontics to resolve long-standing dental problems such as bite issues (overbites, underbites, crossbites) that can lead to jaw pain, headaches, and digestive difficulties if left untreated.

When we dive into the world of orthodontic treatments, particularly focusing on the nuances of treatment duration and effectiveness between ceramic brackets and other invisible options, it's essential to unpack a variety of factors that influence pediatric patients' outcomes. This exploration not only sheds light on the technical aspects but also considers the broader implications for young patients navigating their orthodontic journeys.


Firstly, let's touch upon ceramic brackets themselves. Often hailed as a more aesthetically pleasing option compared to traditional metal brackets, ceramic brackets are made from tooth-colored materials, making them less noticeable on a child's smile. In terms of treatment duration, studies suggest that ceramic brackets can be comparable to metal brackets in terms of overall time required to achieve desired results. However, the efficiency can vary based on several factors including the severity of the case and oral habits of the patient. Some pediatric patients might experience slightly longer treatment times with ceramic brackets due to their design, which can sometimes be more delicate than metal counterparts, potentially leading to more adjustments over time.


On the effectiveness front, ceramic brackets have shown promising results, often providing satisfactory alignment with fewer aesthetic concerns for young patients who might be self-conscious about their appearance during treatment. Yet, it's crucial to acknowledge that effectiveness isn't solely dictated by the bracket material but also by how well they are utilized in conjunction with other orthodontic appliances and patient compliance with care instructions-such as maintaining oral hygiene and adhering to dietary restrictions.


When comparing ceramic brackets with other invisible options like clear aligners (e.g., Invisalign), several key distinctions arise. Clear aligners represent a significant leap in aesthetic orthodontics; they are virtually invisible and removable, offering convenience for young patients who might find traditional braces cumbersome during meals or social activities. In terms of treatment duration, clear aligners can sometimes offer a quicker path to results for certain types of malocclusions due to their customizable nature and ability to apply precise forces directly where needed without interference from fixed appliances. However, not all cases are suitable for aligner therapy; complex malocclusions might still necessitate traditional braces including ceramic ones for optimal outcomes.


Effectiveness-wise, clear aligners boast high success rates when used appropriately but require meticulous adherence from patients-they need to wear them for at least 20-22 hours daily for effective movement of teeth. Pediatric patients may face challenges here if they tend towards forgetfulness or resistance to wearing appliances consistently. Moreover, since aligners are removable, maintaining proper oral hygiene can be easier compared to fixed braces but also depends heavily on patient discipline and parental support during younger ages.


Considering various influencing factors such as oral habits (thumb-sucking or tongue-thrusting), severity of dental crowding or misalignment, and individual compliance levels paints a comprehensive picture of how both ceramic brackets and invisible options perform in pediatric populations. It becomes evident that while ceramic brackets offer a balance between aesthetics and traditional efficacy without requiring removal for eating or cleaning (unlike aligners), clear aligners shine in scenarios demanding discretion and flexibility-though at the cost of potential decreased efficacy if not used correctly according to prescribed guidelines.


In conclusion, choosing between ceramic brackets and other invisible treatment options hinges on an intricate interplay of clinical needs specific to each pediatric patient alongside lifestyle considerations unique to families navigating orthodontic care together.

**Correcting Speech Impediments**: Misaligned teeth or jaw structures can contribute to speech difficulties; orthodontic treatment can correct these issues, improving articulation and overall communication skills.

When it comes to orthodontic treatment, parents often find themselves at a crossroads, weighing the options available for their children's dental alignment needs. Among these choices, ceramic brackets stand out as a popular option, especially when juxtaposed with other "invisible" alternatives like clear aligners and lingual brackets. Let's unpack the financial implications of choosing ceramic brackets against these alternatives, dissecting initial costs, additional expenses that might arise, and how insurance coverage can vary, painting a clearer picture for parents making this crucial decision.


Initial Costs: A Closer Look


Ceramic brackets are often perceived as a middle-ground option between traditional metal braces and the fully invisible aligner systems. Initially, ceramic brackets tend to be more expensive than metal braces due to their aesthetic appeal and the materials used-ceramic offers a tooth-colored option that blends with teeth, which many find desirable. However, they generally fall in line with or slightly above the cost of traditional metal braces when considering the overall treatment duration and frequency of adjustments required.


In contrast, clear aligners like Invisalign are often positioned as premium products due to their convenience and invisibility. While they can be priced higher initially compared to ceramic brackets (especially for complex cases requiring multiple sets of aligners), some parents might view them as an investment in their child's comfort and lifestyle during treatment-no wires to tighten or food restrictions that come with traditional braces. However, it's worth noting that clear aligners may require more frequent purchases as treatment progresses, potentially leading to cumulative costs rivaling those of ceramic or metal braces over time.


Potential Additional Expenses: Beyond the Brace Cost


One critical aspect often overlooked is additional expenses that come hand-in-hand with orthodontic treatments. For ceramic brackets, while they might not require as frequent adjustments as metal braces (thanks to their smooth surface reducing friction), there's still potential for extra costs down the line. One significant consideration here is tooth whitening post-treatment. Ceramic brackets can sometimes stain over time despite their color-matching design intent; hence, some parents opt for professional whitening sessions post-treatment to achieve that sparkling smile everyone desires. These sessions aren't cheap and need factoring into the overall budget.


On the other hand, clear aligners also have associated costs beyond the initial fee-like replacement aligners if lost or damaged (which is quite common given their removable nature) and occasional office visits specifically for fitting new sets as treatment progresses. While these don't directly equate to tooth whitening costs, they contribute significantly to the total expenditure over time.


Insurance Coverage Nuances: Navigating Benefits


Insurance coverage plays a pivotal role in easing-or complicating-the financial burden of orthodontic treatments. Here again, ceramic brackets present an interesting case compared to invisible options like clear aligners. Many dental insurance plans cover a portion of traditional metal brace treatments but may offer less comprehensive coverage for cosmetic options like ceramic brackets or even clearer alternatives like lingual braces (placed behind teeth). Parents should meticulously review their policies regarding what percentages are covered for different types of appliances since this can significantly impact out-of-pocket costs.


Clear aligners often face similar challenges with insurance coverage; while some plans recognize them as legitimate orthodontic treatments worthy of partial reimbursement, others categorize them

**Preventive Measures Against Tooth Wear**: Properly aligned teeth are less prone to excessive wear and tear; adults may pursue orthodontic treatment to prevent premature tooth degradation and associated costs of restorative dentistry.

When we chat about orthodontic treatments, especially for kids, the focus often shifts to achieving that perfect smile, but it's equally important to consider how these treatments affect comfort and oral hygiene. Let's dive into how ceramic brackets compare with other invisible options like clear aligners and lingual brackets, focusing on their impact on oral comfort during treatment and the ease of maintaining good oral hygiene-a crucial aspect for our younger patients.


Ceramic Brackets: A Balance of Aesthetics and Comfort


Ceramic brackets have made a significant stride in blending with the natural color of teeth, making them a popular choice for those who want a less obvious orthodontic solution. From a comfort standpoint, ceramic brackets are generally well-tolerated. They tend to be smoother than traditional metal brackets, which can reduce the likelihood of irritation to the cheeks and lips-a common complaint with metal appliances. However, they can be more prone to staining if not cleaned properly, which might require kids to be more vigilant with their oral hygiene routines. In terms of maintaining oral hygiene, while ceramic brackets aren't as shiny and attention-grabbing as some might think, their surface can still accumulate plaque if not brushed diligely around each bracket and the wire. The slightly rougher surface compared to clear aligners might make it a bit harder to keep things spotless, but with regular brushing and flossing techniques tailored for orthodontic wearers, this challenge is manageable.


Clear Aligners: The Invisible Choice


Clear aligners represent a significant leap in cosmetic orthodontics; they're essentially invisible when worn, making them a favorite among teens and adults alike who prioritize discretion. When it comes to comfort during treatment, clear aligners shine-there are no metal parts poking or rubbing against the gums or inner cheeks. This design minimizes irritation significantly. However, maintaining oral hygiene with aligners requires a different approach compared to fixed appliances like brackets. Since aligners need to be removed for eating and brushing, they actually encourage better oral hygiene practices by giving kids full access to all surfaces of their teeth for cleaning. Yet, it's crucial that kids develop a habit of consistently removing and cleaning their aligners along with thorough brushing after meals-these habits are key to preventing decay and gum disease during treatment.


Lingual Brackets: Hidden but Not Without Challenges


Lingual brackets offer another invisible option by attaching to the back side of teeth (the tongue side), making them nearly invisible from the outside. This could be considered the ultimate in discretion for those very conscious about appearance during treatment. Comfort-wise, lingual braces can initially pose a learning curve; speaking and eating might feel awkward at first due to their placement on the tongue side of teeth. Over time though, most adapt quite well. Regarding oral hygiene, lingual brackets present unique challenges since they're tucked away from easy access. Kids will need special tools or techniques-like interdental brushes designed specifically for lingual braces-to clean effectively around these hidden braces without irritating gums or damaging tooth enamel inadvertently swollen from plaque buildup hidden from sight.


Conclusion: Choosing What Fits Best


In wrapping up this comparison between ceramic brackets and other invisible options like clear aligners and lingual brackets regarding comfort during orthodontic treatment for kids and ease of maintaining oral hygiene-it's clear each choice comes with its own

**Facilitating Better Chewing Efficiency**: Orthodontic treatment can improve bite function and alignment, allowing for more efficient chewing which is crucial for digestion and overall nutritional health in adulthood.

The journey of orthodontic treatment for children, particularly the shift from traditional metal braces to more discreet options like ceramic brackets and other invisible alternatives, represents a significant intersection between dental health and psychological wellbeing. This transformation isn't merely about achieving a straighter smile; it's deeply entwined with the emotional landscape of growing up, where self-esteem and social dynamics play pivotal roles. Let's delve into how different invisible brace options can influence these crucial aspects of a child's development.


Starting with ceramic brackets, often hailed as the "invisible" alternative to metal braces, their impact on self-esteem is notably positive. Made from tooth-colored materials, ceramic brackets blend seamlessly with the natural color of teeth, significantly reducing the visibility of braces. For many children, this subtlety can be a game-changer. Imagine the confidence boost for a young individual knowing that their orthodontic treatment is working towards a straight smile without drawing unwanted attention or comments. This reduction in visibility can alleviate anxiety about appearance during school years, where social interactions are heavily influenced by peer perceptions. With ceramic brackets, children might feel less self-conscious about smiling widely or participating in photos, fostering an environment where they can engage more freely and positively with their peers.


However, while ceramic brackets offer enhanced aesthetics over traditional metal braces, they're not entirely without drawbacks that could affect psychological comfort. They tend to be more fragile than metal brackets-more susceptible to staining and breaking-and often require closer dental care supervision. For some children, this might introduce additional stress regarding maintenance and potential visits to the orthodontist for repairs, which could momentarily dampen the initial confidence gained from their discreet appearance.


Beyond ceramic brackets, clear aligners like Invisalign have emerged as another formidable contender in the realm of invisible orthodontics. These removable trays offer an even higher level of discretion since they can be taken out for meals and brushing. For adolescents who value independence and want control over their treatment process, clear aligners represent freedom alongside invisibility. The ability to remove aligners can ease concerns about food restrictions common with fixed braces and allows for better oral hygiene practices without the cumbersome task of brushing around wires and brackets. This flexibility might contribute positively to self-esteem by promoting a sense of responsibility and normalcy during treatment-something that resonates deeply with teenagers striving for autonomy.


Yet، despite these advantages، clear aligners also present unique challenges impacting psychological well-being。 The requirement to wear them consistently (typically 22 hours a day) demands discipline; missing even a few hours could delay treatment progress。 This level of commitment might create stress or feelings of burden for some children, potentially affecting their motivation和整体治疗体验。此外,初次适应口感和清洁过程可能需要时间,这一初期调整期也可能影响自信心。


In comparing these invisible options-ceramic brackets versus clear aligners-it becomes evident that while both aim to minimize the visual impact of orthodontic treatment,they cater differently to psychological needs。Ceramic brackets provide a balance between discretion和Durability but may come with slight maintenance anxieties。On the other hand,clear aligners offer unprecedented convenience和flexibility,但要求更高的 discipline和commitment,从心理角度来说,这可能对不同的儿童产生不同影响。


Ultimately,the choice between ceramic brackets和其他无形选项 shouldn't solely rest on

Redirect to:

  • Tooth decay
  • From a page move: This is a redirect from a page that has been moved (renamed). This page was kept as a redirect to avoid breaking links, both internal and external, that may have been made to the old page name.
Dental braces

Dental braces (also known as orthodontic braces, or simply braces) are devices used in orthodontics that align and straighten teeth and help position them with regard to a person's bite, while also aiming to improve dental health. They are often used to correct underbites, as well as malocclusions, overbites, open bites, gaps, deep bites, cross bites, crooked teeth, and various other flaws of the teeth and jaw. Braces can be either cosmetic or structural. Dental braces are often used in conjunction with other orthodontic appliances to help widen the palate or jaws and to otherwise assist in shaping the teeth and jaws.

Process

[edit]

The application of braces moves the teeth as a result of force and pressure on the teeth. Traditionally, four basic elements are used: brackets, bonding material, arch wire, and ligature elastic (also called an "O-ring"). The teeth move when the arch wire puts pressure on the brackets and teeth. Sometimes springs or rubber bands are used to put more force in a specific direction.[1]

Braces apply constant pressure which, over time, moves teeth into the desired positions. The process loosens the tooth after which new bone grows to support the tooth in its new position. This is called bone remodelling. Bone remodelling is a biomechanical process responsible for making bones stronger in response to sustained load-bearing activity and weaker in the absence of carrying a load. Bones are made of cells called osteoclasts and osteoblasts. Two different kinds of bone resorption are possible: direct resorption, which starts from the lining cells of the alveolar bone, and indirect or retrograde resorption, which occurs when the periodontal ligament has been subjected to an excessive amount and duration of compressive stress.[2] Another important factor associated with tooth movement is bone deposition. Bone deposition occurs in the distracted periodontal ligament. Without bone deposition, the tooth will loosen, and voids will occur distal to the direction of tooth movement.[3]

Types

[edit]
"Clear" braces
Upper and Lower Jaw Functional Expanders
  • Traditional metal wired braces (also known as "train track braces") are stainless-steel and are sometimes used in combination with titanium. Traditional metal braces are the most common type of braces.[4] These braces have a metal bracket with elastic ties (also known as rubber bands) holding the wire onto the metal brackets. The second-most common type of braces is self-ligating braces, which have a built-in system to secure the archwire to the brackets and do not require elastic ties. Instead, the wire goes through the bracket. Often with this type of braces, treatment time is reduced, there is less pain on the teeth, and fewer adjustments are required than with traditional braces.
  • Gold-plated stainless steel braces are often employed for patients allergic to nickel (a basic and important component of stainless steel), but may also be chosen for aesthetic reasons.
  • Lingual braces are a cosmetic alternative in which custom-made braces are bonded to the back of the teeth making them externally invisible.
  • Titanium braces resemble stainless-steel braces but are lighter and just as strong. People with allergies to nickel in steel often choose titanium braces, but they are more expensive than stainless steel braces.
  • Customized orthodontic treatment systems combine high technology including 3-D imaging, treatment planning software and a robot to custom bend the wire. Customized systems such as this offer faster treatment times and more efficient results.[5]
  • Progressive, clear removable aligners may be used to gradually move teeth into their final positions. Aligners are generally not used for complex orthodontic cases, such as when extractions, jaw surgery, or palate expansion are necessary.[medical citation needed][6]

Fitting procedure

[edit]
A patient's teeth are prepared for the application of braces.

Orthodontic services may be provided by any licensed dentist trained in orthodontics. In North America, most orthodontic treatment is done by orthodontists, who are dentists in the diagnosis and treatment of malocclusions—malalignments of the teeth, jaws, or both. A dentist must complete 2–3 years of additional post-doctoral training to earn a specialty certificate in orthodontics. There are many general practitioners who also provide orthodontic services.

The first step is to determine whether braces are suitable for the patient. The doctor consults with the patient and inspects the teeth visually. If braces are appropriate, a records appointment is set up where X-rays, moulds, and impressions are made. These records are analyzed to determine the problems and the proper course of action. The use of digital models is rapidly increasing in the orthodontic industry. Digital treatment starts with the creation of a three-dimensional digital model of the patient's arches. This model is produced by laser-scanning plaster models created using dental impressions. Computer-automated treatment simulation has the ability to automatically separate the gums and teeth from one another and can handle malocclusions well; this software enables clinicians to ensure, in a virtual setting, that the selected treatment will produce the optimal outcome, with minimal user input.[medical citation needed]

Typical treatment times vary from six months to two and a half years depending on the complexity and types of problems. Orthognathic surgery may be required in extreme cases. About 2 weeks before the braces are applied, orthodontic spacers may be required to spread apart back teeth in order to create enough space for the bands.

Teeth to be braced will have an adhesive applied to help the cement bond to the surface of the tooth. In most cases, the teeth will be banded and then brackets will be added. A bracket will be applied with dental cement, and then cured with light until hardened. This process usually takes a few seconds per tooth. If required, orthodontic spacers may be inserted between the molars to make room for molar bands to be placed at a later date. Molar bands are required to ensure brackets will stick. Bands are also utilized when dental fillings or other dental works make securing a bracket to a tooth infeasible. Orthodontic tubes (stainless steel tubes that allow wires to pass through them), also known as molar tubes, are directly bonded to molar teeth either by a chemical curing or a light curing adhesive. Usually, molar tubes are directly welded to bands, which is a metal ring that fits onto the molar tooth. Directly bonded molar tubes are associated with a higher failure rate when compared to molar bands cemented with glass ionomer cement. Failure of orthodontic brackets, bonded tubes or bands will increase the overall treatment time for the patient. There is evidence suggesting that there is less enamel decalcification associated with molar bands cemented with glass ionomer cement compared with orthodontic tubes directly cemented to molars using a light cured adhesive. Further evidence is needed to withdraw a more robust conclusion due to limited data.[7]

An archwire will be threaded between the brackets and affixed with elastic or metal ligatures. Ligatures are available in a wide variety of colours, and the patient can choose which colour they like. Arch wires are bent, shaped, and tightened frequently to achieve the desired results.

Dental braces, with a transparent power chain, removed after completion of treatment.

Modern orthodontics makes frequent use of nickel-titanium archwires and temperature-sensitive materials. When cold, the archwire is limp and flexible, easily threaded between brackets of any configuration. Once heated to body temperature, the arch wire will stiffen and seek to retain its shape, creating constant light force on the teeth.

Brackets with hooks can be placed, or hooks can be created and affixed to the arch wire to affix rubber bands. The placement and configuration of the rubber bands will depend on the course of treatment and the individual patient. Rubber bands are made in different diameters, colours, sizes, and strengths. They are also typically available in two versions: Coloured or clear/opaque.

The fitting process can vary between different types of braces, though there are similarities such as the initial steps of moulding the teeth before application. For example, with clear braces, impressions of a patient's teeth are evaluated to create a series of trays, which fit to the patient's mouth almost like a protective mouthpiece. With some forms of braces, the brackets are placed in a special form that is customized to the patient's mouth, drastically reducing the application time.

In many cases, there is insufficient space in the mouth for all the teeth to fit properly. There are two main procedures to make room in these cases. One is extraction: teeth are removed to create more space. The second is expansion, in which the palate or arch is made larger by using a palatal expander. Expanders can be used with both children and adults. Since the bones of adults are already fused, expanding the palate is not possible without surgery to separate them. An expander can be used on an adult without surgery but would be used to expand the dental arch, and not the palate.

Sometimes children and teenage patients, and occasionally adults, are required to wear a headgear appliance as part of the primary treatment phase to keep certain teeth from moving (for more detail on headgear and facemask appliances see Orthodontic headgear). When braces put pressure on one's teeth, the periodontal membrane stretches on one side and is compressed on the other. This movement needs to be done slowly or otherwise, the patient risks losing their teeth. This is why braces are worn as long as they are and adjustments are only made every so often.

Young Colombian man during an adjustment visit for his orthodontics

Braces are typically adjusted every three to six weeks. This helps shift the teeth into the correct position. When they get adjusted, the orthodontist removes the coloured or metal ligatures keeping the arch wire in place. The arch wire is then removed and may be replaced or modified. When the archwire has been placed back into the mouth, the patient may choose a colour for the new elastic ligatures, which are then affixed to the metal brackets. The adjusting process may cause some discomfort to the patient, which is normal.

Post-treatment

[edit]

Patients may need post-orthodontic surgery, such as a fiberotomy or alternatively a gum lift, to prepare their teeth for retainer use and improve the gumline contours after the braces come off. After braces treatment, patients can use a transparent plate to keep the teeth in alignment for a certain period of time. After treatment, patients usually use transparent plates for 6 months. In patients with long and difficult treatment, a fixative wire is attached to the back of the teeth to prevent the teeth from returning to their original state.[8]

Retainers

[edit]
Hawley retainers are the most common type of retainers. This picture shows retainers for the top (right) and bottom (left) of the mouth.

In order to prevent the teeth from moving back to their original position, retainers are worn once the treatment is complete. Retainers help in maintaining and stabilizing the position of teeth long enough to permit the reorganization of the supporting structures after the active phase of orthodontic therapy. If the patient does not wear the retainer appropriately and/or for the right amount of time, the teeth may move towards their previous position. For regular braces, Hawley retainers are used. They are made of metal hooks that surround the teeth and are enclosed by an acrylic plate shaped to fit the patient's palate. For Clear Removable braces, an Essix retainer is used. This is similar to the original aligner; it is a clear plastic tray that is firmly fitted to the teeth and stays in place without a plate fitted to the palate. There is also a bonded retainer where a wire is permanently bonded to the lingual side of the teeth, usually the lower teeth only.

Headgear

[edit]

Headgear needs to be worn between 12 and 22 hours each day to be effective in correcting the overbite, typically for 12 to 18 months depending on the severity of the overbite, how much it is worn and what growth stage the patient is in. Typically the prescribed daily wear time will be between 14 and 16 hours a day and is frequently used as a post-primary treatment phase to maintain the position of the jaw and arch. Headgear can be used during the night while the patient sleeps.[9][better source needed]

Orthodontic headgear usually consists of three major components:

Full orthodontic headgear with head cap, fitting straps, facebow and elastics
  1. Facebow: the facebow (or J-Hooks) is fitted with a metal arch onto headgear tubes attached to the rear upper and lower molars. This facebow then extends out of the mouth and around the patient's face. J-Hooks are different in that they hook into the patient's mouth and attach directly to the brace (see photo for an example of J-Hooks).
  2. Head cap: the head cap typically consists of one or a number of straps fitting around the patient's head. This is attached with elastic bands or springs to the facebow. Additional straps and attachments are used to ensure comfort and safety (see photo).
  3. Attachment: typically consisting of rubber bands, elastics, or springs—joins the facebow or J-Hooks and the head cap together, providing the force to move the upper teeth, jaw backwards.

The headgear application is one of the most useful appliances available to the orthodontist when looking to correct a Class II malocclusion. See more details in the section Orthodontic headgear.

Pre-finisher

[edit]

The pre-finisher is moulded to the patient's teeth by use of extreme pressure on the appliance by the person's jaw. The product is then worn a certain amount of time with the user applying force to the appliance in their mouth for 10 to 15 seconds at a time. The goal of the process is to increase the exercise time in applying the force to the appliance. If a person's teeth are not ready for a proper retainer the orthodontist may prescribe the use of a preformed finishing appliance such as the pre-finisher. This appliance fixes gaps between the teeth, small spaces between the upper and lower jaw, and other minor problems.

Complications and risks

[edit]

A group of dental researchers, Fatma Boke, Cagri Gazioglu, Selvi Akkaya, and Murat Akkaya, conducted a study titled "Relationship between orthodontic treatment and gingival health." The results indicated that some orthodontist treatments result in gingivitis, also known as gum disease. The researchers concluded that functional appliances used to harness natural forces (such as improving the alignment of bites) do not usually have major effects on the gum after treatment.[10] However, fixed appliances such as braces, which most people get, can result in visible plaque, visible inflammation, and gum recession in a majority of the patients. The formation of plaques around the teeth of patients with braces is almost inevitable regardless of plaque control and can result in mild gingivitis. But if someone with braces does not clean their teeth carefully, plaques will form, leading to more severe gingivitis and gum recession.

Experiencing some pain following fitting and activation of fixed orthodontic braces is very common and several methods have been suggested to tackle this.[11][12] Pain associated with orthodontic treatment increases in proportion to the amount of force that is applied to the teeth. When a force is applied to a tooth via a brace, there is a reduction in the blood supply to the fibres that attach the tooth to the surrounding bone. This reduction in blood supply results in inflammation and the release of several chemical factors, which stimulate the pain response. Orthodontic pain can be managed using pharmacological interventions, which involve the use of analgesics applied locally or systemically. These analgesics are divided into four main categories, including opioids, non-steroidal anti-inflammatory drugs (NSAIDs), paracetamol and local anesthesia. The first three of these analgesics are commonly taken systemically to reduce orthodontic pain.[13]

A Cochrane Review in 2017 evaluated the pharmacological interventions for pain relief during orthodontic treatment. The study concluded that there was moderate-quality evidence that analgesics reduce the pain associated with orthodontic treatment. However, due to a lack of evidence, it was unclear whether systemic NSAIDs were more effective than paracetamol, and whether topical NSAIDs were more effective than local anaesthesia in the reduction of pain associated with orthodontic treatment. More high-quality research is required to investigate these particular comparisons.[13]

The dental displacement obtained with the orthodontic appliance determines in most cases some degree of root resorption. Only in a few cases is this side effect large enough to be considered real clinical damage to the tooth. In rare cases, the teeth may fall out or have to be extracted due to root resorption.[14][15]

History

[edit]

Ancient

[edit]
Old Braces at a museum in Jbeil, Lebanon

According to scholars and historians, braces date back to ancient times. Around 400–300 BC, Hippocrates and Aristotle contemplated ways to straighten teeth and fix various dental conditions. Archaeologists have discovered numerous mummified ancient individuals with what appear to be metal bands wrapped around their teeth. Catgut, a type of cord made from the natural fibres of an animal's intestines, performed a similar role to today's orthodontic wire in closing gaps in the teeth and mouth.[16]

The Etruscans buried their dead with dental appliances in place to maintain space and prevent the collapse of the teeth during the afterlife. A Roman tomb was found with a number of teeth bound with gold wire documented as a ligature wire, a small elastic wire that is used to affix the arch wire to the bracket. Even Cleopatra wore a pair. Roman philosopher and physician Aulus Cornelius Celsus first recorded the treatment of teeth by finger pressure. Unfortunately, due to a lack of evidence, poor preservation of bodies, and primitive technology, little research was carried out on dental braces until around the 17th century, although dentistry was making great advancements as a profession by then.[citation needed]

18th century

[edit]
Portrait of Fauchard from his 1728 edition of "The Surgical Dentist".

Orthodontics truly began developing in the 18th and 19th centuries. In 1669, French dentist Pierre Fauchard, who is often credited with inventing modern orthodontics, published a book entitled "The Surgeon Dentist" on methods of straightening teeth. Fauchard, in his practice, used a device called a "Bandeau", a horseshoe-shaped piece of iron that helped expand the palate. In 1754, another French dentist, Louis Bourdet, dentist to the King of France, followed Fauchard's book with The Dentist's Art, which also dedicated a chapter to tooth alignment and application. He perfected the "Bandeau" and was the first dentist on record to recommend extraction of the premolar teeth to alleviate crowding and improve jaw growth.

19th century

[edit]

Although teeth and palate straightening and/or pulling were used to improve the alignment of remaining teeth and had been practised since early times, orthodontics, as a science of its own, did not really exist until the mid-19th century. Several important dentists helped to advance dental braces with specific instruments and tools that allowed braces to be improved.

In 1819, Christophe François Delabarre introduced the wire crib, which marked the birth of contemporary orthodontics, and gum elastics were first employed by Maynard in 1843. Tucker was the first to cut rubber bands from rubber tubing in 1850. Dentist, writer, artist, and sculptor Norman William Kingsley in 1858 wrote the first article on orthodontics and in 1880, his book, Treatise on Oral Deformities, was published. A dentist named John Nutting Farrar is credited for writing two volumes entitled, A Treatise on the Irregularities of the Teeth and Their Corrections and was the first to suggest the use of mild force at timed intervals to move teeth.

20th century

[edit]

In the early 20th century, Edward Angle devised the first simple classification system for malocclusions, such as Class I, Class II, and so on. His classification system is still used today as a way for dentists to describe how crooked teeth are, what way teeth are pointing, and how teeth fit together. Angle contributed greatly to the design of orthodontic and dental appliances, making many simplifications. He founded the first school and college of orthodontics, organized the American Society of Orthodontia in 1901 which became the American Association of Orthodontists (AAO) in the 1930s, and founded the first orthodontic journal in 1907. Other innovations in orthodontics in the late 19th and early 20th centuries included the first textbook on orthodontics for children, published by J.J. Guilford in 1889, and the use of rubber elastics, pioneered by Calvin S. Case, along with Henry Albert Baker.

Today, space age wires (also known as dental arch wires) are used to tighten braces. In 1959, the Naval Ordnance Laboratory created an alloy of nickel and titanium called Nitinol. NASA further studied the material's physical properties.[17] In 1979, Dr. George Andreasen developed a new method of fixing braces with the use of the Nitinol wires based on their superelasticity. Andreasen used the wire on some patients and later found out that he could use it for the entire treatment. Andreasen then began using the nitinol wires for all his treatments and as a result, dental doctor visits were reduced, the cost of dental treatment was reduced, and patients reported less discomfort.

See also

[edit]
  • Mandibular advancement splint
  • Oral and maxillofacial surgery
  • Orthognathic surgery
  • Prosthodontics
  • Trismus
  • Dental implant

References

[edit]
  1. ^ "Dental Braces and Retainers". WebMD. Retrieved 2020-10-30.
  2. ^ Robling, Alexander G.; Castillo, Alesha B.; Turner, Charles H. (2006). "Biomechanical and Molecular Regulation of Bone Remodeling". Annual Review of Biomedical Engineering. 8: 455–498. doi:10.1146/annurev.bioeng.8.061505.095721. PMID 16834564.
  3. ^ Toledo SR, Oliveira ID, Okamoto OK, Zago MA, de Seixas Alves MT, Filho RJ, et al. (September 2010). "Bone deposition, bone resorption, and osteosarcoma". Journal of Orthopaedic Research. 28 (9): 1142–1148. doi:10.1002/jor.21120. PMID 20225287. S2CID 22660771.
  4. ^ "Metal Braces for Teeth: Braces Types, Treatment, Cost in India". Clove Dental. Retrieved 2025-02-06.
  5. ^ Saxe, Alana K.; Louie, Lenore J.; Mah, James (2010). "Efficiency and effectiveness of SureSmile". World Journal of Orthodontics. 11 (1): 16–22. PMID 20209172.
  6. ^ Tamer, Ä°pek (December 2019). "Orthodontic Treatment with Clear Aligners and The Scientific Reality Behind Their Marketing: A Literature Review". Turkish Journal of Orthodontics. 32 (4): 241–246. doi:10.5152/TurkJOrthod.2019.18083. PMC 7018497. PMID 32110470.
  7. ^ Millett DT, Mandall NA, Mattick RC, Hickman J, Glenny AM (February 2017). "Adhesives for bonded molar tubes during fixed brace treatment". The Cochrane Database of Systematic Reviews. 2 (3): CD008236. doi:10.1002/14651858.cd008236.pub3. PMC 6464028. PMID 28230910.
  8. ^ Rubie J Patrick (2017). "What About Teeth After Braces?" 2017 – "Health Journal Article" Toothcost Archived 2021-10-18 at the Wayback Machine
  9. ^ Naten, Joshua. "Braces Headgear (Treatments)". toothcost.com. Archived from the original on 19 October 2021.
  10. ^ Boke, Fatma; Gazioglu, Cagri; Akkaya, Sevil; Akkaya, Murat (2014). "Relationship between orthodontic treatment and gingival health: A retrospective study". European Journal of Dentistry. 8 (3): 373–380. doi:10.4103/1305-7456.137651. ISSN 1305-7456. PMC 4144137. PMID 25202219.
  11. ^ Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R (March 2014). "The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators". Lasers in Medical Science. 29 (2): 559–64. doi:10.1007/s10103-012-1258-1. PMID 23334785. S2CID 25416518.
  12. ^ Eslamian L, Borzabadi-Farahani A, Edini HZ, Badiee MR, Lynch E, Mortazavi A (September 2013). "The analgesic effect of benzocaine mucoadhesive patches on orthodontic pain caused by elastomeric separators, a preliminary study". Acta Odontologica Scandinavica. 71 (5): 1168–73. doi:10.3109/00016357.2012.757358. PMID 23301559. S2CID 22561192.
  13. ^ a b Monk AB, Harrison JE, Worthington HV, Teague A (November 2017). "Pharmacological interventions for pain relief during orthodontic treatment". The Cochrane Database of Systematic Reviews. 11 (12): CD003976. doi:10.1002/14651858.cd003976.pub2. PMC 6486038. PMID 29182798.
  14. ^ Artun J, Smale I, Behbehani F, Doppel D, Van't Hof M, Kuijpers-Jagtman AM (November 2005). "Apical root resorption six and 12 months after initiation of fixed orthodontic appliance therapy". The Angle Orthodontist. 75 (6): 919–26. PMID 16448232.
  15. ^ Mavragani M, Vergari A, Selliseth NJ, Bøe OE, Wisth PL (December 2000). "A radiographic comparison of apical root resorption after orthodontic treatment with a standard edgewise and a straight-wire edgewise technique". European Journal of Orthodontics. 22 (6): 665–74. doi:10.1093/ejo/22.6.665. PMID 11212602.
  16. ^ Wahl N (February 2005). "Orthodontics in 3 millennia. Chapter 1: Antiquity to the mid-19th century". American Journal of Orthodontics and Dentofacial Orthopedics. 127 (2): 255–9. doi:10.1016/j.ajodo.2004.11.013. PMID 15750547.
  17. ^ "NASA Technical Reports Server (NTRS)". Spinoff 1979. February 1979. Retrieved 2021-03-02.
[edit]
  • Useful Resources: FAQ and Downloadable eBooks at Orthodontics Australia
  • Orthos Explain: Treatment Options at Orthodontics Australia
  • Media related to Dental braces at Wikimedia Commons

 

 

Tooth
A chimpanzee displaying his teeth
Details
Identifiers
Latin dens
MeSH D014070
FMA 12516
Anatomical terminology
[edit on Wikidata]

A tooth (pl.: teeth) is a hard, calcified structure found in the jaws (or mouths) of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.

The general structure of teeth is similar across the vertebrates, although there is considerable variation in their form and position. The teeth of mammals have deep roots, and this pattern is also found in some fish, and in crocodilians. In most teleost fish, however, the teeth are attached to the outer surface of the bone, while in lizards they are attached to the inner surface of the jaw by one side. In cartilaginous fish, such as sharks, the teeth are attached by tough ligaments to the hoops of cartilage that form the jaw.[1]

Monophyodonts are animals that develop only one set of teeth, while diphyodonts grow an early set of deciduous teeth and a later set of permanent or "adult" teeth. Polyphyodonts grow many sets of teeth. For example, sharks, grow a new set of teeth every two weeks to replace worn teeth. Most extant mammals including humans are diphyodonts, but there are exceptions including elephants, kangaroos, and manatees, all of which are polyphyodonts.

Rodent incisors grow and wear away continually through gnawing, which helps maintain relatively constant length. The industry of the beaver is due in part to this qualification. Some rodents, such as voles and guinea pigs (but not mice), as well as lagomorpha (rabbits, hares and pikas), have continuously growing molars in addition to incisors.[2][3] Also, tusks (in tusked mammals) grow almost throughout life.[4]

Teeth are not always attached to the jaw, as they are in mammals. In many reptiles and fish, teeth are attached to the palate or to the floor of the mouth, forming additional rows inside those on the jaws proper. Some teleosts even have teeth in the pharynx. While not true teeth in the usual sense, the dermal denticles of sharks are almost identical in structure and are likely to have the same evolutionary origin. Indeed, teeth appear to have first evolved in sharks, and are not found in the more primitive jawless fish – while lampreys do have tooth-like structures on the tongue, these are in fact, composed of keratin, not of dentine or enamel, and bear no relationship to true teeth.[1] Though "modern" teeth-like structures with dentine and enamel have been found in late conodonts, they are now supposed to have evolved independently of later vertebrates' teeth.[5][6]

Living amphibians typically have small teeth, or none at all, since they commonly feed only on soft foods. In reptiles, teeth are generally simple and conical in shape, although there is some variation between species, most notably the venom-injecting fangs of snakes. The pattern of incisors, canines, premolars and molars is found only in mammals, and to varying extents, in their evolutionary ancestors. The numbers of these types of teeth vary greatly between species; zoologists use a standardised dental formula to describe the precise pattern in any given group.[1]

Etymology

[edit]

The word tooth comes from Proto-Germanic *tanþs, derived from the Proto-Indo-European *h₁dent-, which was composed of the root *h₁ed- 'to eat' plus the active participle suffix *-nt, therefore literally meaning 'that which eats'.[7]

The irregular plural form teeth is the result of Germanic umlaut whereby vowels immediately preceding a high vocalic in the following syllable were raised. As the nominative plural ending of the Proto-Germanic consonant stems (to which *tanþs belonged) was *-iz, the root vowel in the plural form *tanþiz (changed by this point to *tÄ…Ì„þi via unrelated phonological processes) was raised to /œÃƒâ€¹Ã‚/, and later unrounded to /eː/, resulting in the tōþ/tÄ“þ alternation attested from Old English. Cf. also Old English bōc/bÄ“Ä‹ 'book/books' and 'mÅ«s/mȳs' 'mouse/mice', from Proto-Germanic *bōks/bōkiz and *mÅ«s/mÅ«siz respectively.

Cognate with Latin dÄ“ns, Greek á½€δούς (odous), and Sanskrit dát.

Origin

[edit]

Teeth are assumed to have evolved either from ectoderm denticles (scales, much like those on the skin of sharks) that folded and integrated into the mouth (called the "outside–in" theory), or from endoderm pharyngeal teeth (primarily formed in the pharynx of jawless vertebrates) (the "inside–out" theory). In addition, there is another theory stating that neural crest gene regulatory network, and neural crest-derived ectomesenchyme are the key to generate teeth (with any epithelium, either ectoderm or endoderm).[4][8]

The genes governing tooth development in mammals are homologous to those involved in the development of fish scales.[9] Study of a tooth plate of a fossil of the extinct fish Romundina stellina showed that the teeth and scales were made of the same tissues, also found in mammal teeth, lending support to the theory that teeth evolved as a modification of scales.[10]

Mammals

[edit]

Teeth are among the most distinctive (and long-lasting) features of mammal species. Paleontologists use teeth to identify fossil species and determine their relationships. The shape of the animal's teeth are related to its diet. For example, plant matter is hard to digest, so herbivores have many molars for chewing and grinding. Carnivores, on the other hand, have canine teeth to kill prey and to tear meat.

Mammals, in general, are diphyodont, meaning that they develop two sets of teeth. In humans, the first set (the "baby", "milk", "primary" or "deciduous" set) normally starts to appear at about six months of age, although some babies are born with one or more visible teeth, known as neonatal teeth. Normal tooth eruption at about six months is known as teething and can be painful. Kangaroos, elephants, and manatees are unusual among mammals because they are polyphyodonts.

Aardvark

[edit]

In aardvarks, teeth lack enamel and have many pulp tubules, hence the name of the order Tubulidentata.[11]

Canines

[edit]

In dogs, the teeth are less likely than humans to form dental cavities because of the very high pH of dog saliva, which prevents enamel from demineralizing.[12] Sometimes called cuspids, these teeth are shaped like points (cusps) and are used for tearing and grasping food.[13]

Cetaceans

[edit]

Like human teeth, whale teeth have polyp-like protrusions located on the root surface of the tooth. These polyps are made of cementum in both species, but in human teeth, the protrusions are located on the outside of the root, while in whales the nodule is located on the inside of the pulp chamber. While the roots of human teeth are made of cementum on the outer surface, whales have cementum on the entire surface of the tooth with a very small layer of enamel at the tip. This small enamel layer is only seen in older whales where the cementum has been worn away to show the underlying enamel.[14]

The toothed whale is a parvorder of the cetaceans characterized by having teeth. The teeth differ considerably among the species. They may be numerous, with some dolphins bearing over 100 teeth in their jaws. On the other hand, the narwhals have a giant unicorn-like tusk, which is a tooth containing millions of sensory pathways and used for sensing during feeding, navigation, and mating. It is the most neurologically complex tooth known. Beaked whales are almost toothless, with only bizarre teeth found in males. These teeth may be used for feeding but also for demonstrating aggression and showmanship.

Primates

[edit]

In humans (and most other primates), there are usually 20 primary (also "baby" or "milk") teeth, and later up to 32 permanent teeth. Four of these 32 may be third molars or wisdom teeth, although these are not present in all adults, and may be removed surgically later in life.[15]

Among primary teeth, 10 of them are usually found in the maxilla (i.e. upper jaw) and the other 10 in the mandible (i.e. lower jaw). Among permanent teeth, 16 are found in the maxilla and the other 16 in the mandible. Most of the teeth have uniquely distinguishing features.

Horse

[edit]

An adult horse has between 36 and 44 teeth. The enamel and dentin layers of horse teeth are intertwined.[16] All horses have 12 premolars, 12 molars, and 12 incisors.[17] Generally, all male equines also have four canine teeth (called tushes) between the molars and incisors. However, few female horses (less than 28%) have canines, and those that do usually have only one or two, which many times are only partially erupted.[18] A few horses have one to four wolf teeth, which are vestigial premolars, with most of those having only one or two. They are equally common in male and female horses and much more likely to be on the upper jaw. If present these can cause problems as they can interfere with the horse's bit contact. Therefore, wolf teeth are commonly removed.[17]

Horse teeth can be used to estimate the animal's age. Between birth and five years, age can be closely estimated by observing the eruption pattern on milk teeth and then permanent teeth. By age five, all permanent teeth have usually erupted. The horse is then said to have a "full" mouth. After the age of five, age can only be conjectured by studying the wear patterns on the incisors, shape, the angle at which the incisors meet, and other factors. The wear of teeth may also be affected by diet, natural abnormalities, and cribbing. Two horses of the same age may have different wear patterns.

A horse's incisors, premolars, and molars, once fully developed, continue to erupt as the grinding surface is worn down through chewing. A young adult horse will have teeth, which are 110–130 mm (4.5–5 inches) long, with the majority of the crown remaining below the gumline in the dental socket. The rest of the tooth will slowly emerge from the jaw, erupting about 3 mm (18 in) each year, as the horse ages. When the animal reaches old age, the crowns of the teeth are very short and the teeth are often lost altogether. Very old horses, if lacking molars, may need to have their fodder ground up and soaked in water to create a soft mush for them to eat in order to obtain adequate nutrition.

Proboscideans

[edit]
Section through the ivory tusk of a mammoth

Elephants' tusks are specialized incisors for digging food up and fighting. Some elephant teeth are similar to those in manatees, and elephants are believed to have undergone an aquatic phase in their evolution.

At birth, elephants have a total of 28 molar plate-like grinding teeth not including the tusks. These are organized into four sets of seven successively larger teeth which the elephant will slowly wear through during its lifetime of chewing rough plant material. Only four teeth are used for chewing at a given time, and as each tooth wears out, another tooth moves forward to take its place in a process similar to a conveyor belt. The last and largest of these teeth usually becomes exposed when the animal is around 40 years of age, and will often last for an additional 20 years. When the last of these teeth has fallen out, regardless of the elephant's age, the animal will no longer be able to chew food and will die of starvation.[19][20]

Rabbit

[edit]

Rabbits and other lagomorphs usually shed their deciduous teeth before (or very shortly after) their birth, and are usually born with their permanent teeth.[21] The teeth of rabbits complement their diet, which consists of a wide range of vegetation. Since many of the foods are abrasive enough to cause attrition, rabbit teeth grow continuously throughout life.[22] Rabbits have a total of six incisors, three upper premolars, three upper molars, two lower premolars, and two lower molars on each side. There are no canines. Dental formula is 2.0.3.31.0.2.3 = 28. Three to four millimeters of the tooth is worn away by incisors every week, whereas the cheek teeth require a month to wear away the same amount.[23]

The incisors and cheek teeth of rabbits are called aradicular hypsodont teeth. This is sometimes referred to as an elodent dentition. These teeth grow or erupt continuously. The growth or eruption is held in balance by dental abrasion from chewing a diet high in fiber.

Buccal view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.
Buccal view of the lower incisor from the right dentary of a Rattus rattus
Lingual view of the lower incisor from the right dentary of a Rattus rattus
Midsagittal view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.

Rodents

[edit]

Rodents have upper and lower hypselodont incisors that can continuously grow enamel throughout its life without having properly formed roots.[24] These teeth are also known as aradicular teeth, and unlike humans whose ameloblasts die after tooth development, rodents continually produce enamel, they must wear down their teeth by gnawing on various materials.[25] Enamel and dentin are produced by the enamel organ, and growth is dependent on the presence of stem cells, cellular amplification, and cellular maturation structures in the odontogenic region.[26] Rodent incisors are used for cutting wood, biting through the skin of fruit, or for defense. This allows for the rate of wear and tooth growth to be at equilibrium.[24] The microstructure of rodent incisor enamel has shown to be useful in studying the phylogeny and systematics of rodents because of its independent evolution from the other dental traits. The enamel on rodent incisors are composed of two layers: the inner portio interna (PI) with Hunter-Schreger bands (HSB) and an outer portio externa (PE) with radial enamel (RE).[27] It usually involves the differential regulation of the epithelial stem cell niche in the tooth of two rodent species, such as guinea pigs.[28][29]

Lingual view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.

The teeth have enamel on the outside and exposed dentin on the inside, so they self-sharpen during gnawing. On the other hand, continually growing molars are found in some rodent species, such as the sibling vole and the guinea pig.[28][29] There is variation in the dentition of the rodents, but generally, rodents lack canines and premolars, and have a space between their incisors and molars, called the diastema region.

Manatee

[edit]

Manatees are polyphyodont with mandibular molars developing separately from the jaw and are encased in a bony shell separated by soft tissue.[30][31]

Walrus

[edit]

Walrus tusks are canine teeth that grow continuously throughout life.[32]

Fish

[edit]
Teeth of a great white shark

Fish, such as sharks, may go through many teeth in their lifetime. The replacement of multiple teeth is known as polyphyodontia.

A class of prehistoric shark are called cladodonts for their strange forked teeth.

Unlike the continuous shedding of functional teeth seen in modern sharks,[33][34] the majority of stem chondrichthyan lineages retained all tooth generations developed throughout the life of the animal.[35] This replacement mechanism is exemplified by the tooth whorl-based dentitions of acanthodians,[36] which include the oldest known toothed vertebrate, Qianodus duplicis[37].

Amphibians

[edit]

All amphibians have pedicellate teeth, which are modified to be flexible due to connective tissue and uncalcified dentine that separates the crown from the base of the tooth.[38]

Most amphibians exhibit teeth that have a slight attachment to the jaw or acrodont teeth. Acrodont teeth exhibit limited connection to the dentary and have little enervation.[39] This is ideal for organisms who mostly use their teeth for grasping, but not for crushing and allows for rapid regeneration of teeth at a low energy cost. Teeth are usually lost in the course of feeding if the prey is struggling. Additionally, amphibians that undergo a metamorphosis develop bicuspid shaped teeth.[40]

Reptiles

[edit]

The teeth of reptiles are replaced constantly throughout their lives. Crocodilian juveniles replace teeth with larger ones at a rate as high as one new tooth per socket every month. Once mature, tooth replacement rates can slow to two years and even longer. Overall, crocodilians may use 3,000 teeth from birth to death. New teeth are created within old teeth.[41]

Birds

[edit]

A skull of Ichthyornis discovered in 2014 suggests that the beak of birds may have evolved from teeth to allow chicks to escape their shells earlier, and thus avoid predators and also to penetrate protective covers such as hard earth to access underlying food.[42][43]

Invertebrates

[edit]
The European medicinal leech has three jaws with numerous sharp teeth which function like little saws for incising a host.

True teeth are unique to vertebrates,[44] although many invertebrates have analogous structures often referred to as teeth. The organisms with the simplest genome bearing such tooth-like structures are perhaps the parasitic worms of the family Ancylostomatidae.[45] For example, the hookworm Necator americanus has two dorsal and two ventral cutting plates or teeth around the anterior margin of the buccal capsule. It also has a pair of subdorsal and a pair of subventral teeth located close to the rear.[46]

Historically, the European medicinal leech, another invertebrate parasite, has been used in medicine to remove blood from patients.[47] They have three jaws (tripartite) that resemble saws in both appearance and function, and on them are about 100 sharp teeth used to incise the host. The incision leaves a mark that is an inverted Y inside of a circle. After piercing the skin and injecting anticoagulants (hirudin) and anaesthetics, they suck out blood, consuming up to ten times their body weight in a single meal.[48]

In some species of Bryozoa, the first part of the stomach forms a muscular gizzard lined with chitinous teeth that crush armoured prey such as diatoms. Wave-like peristaltic contractions then move the food through the stomach for digestion.[49]

The limpet rasps algae from rocks using teeth with the strongest known tensile strength of any biological material.

Molluscs have a structure called a radula, which bears a ribbon of chitinous teeth. However, these teeth are histologically and developmentally different from vertebrate teeth and are unlikely to be homologous. For example, vertebrate teeth develop from a neural crest mesenchyme-derived dental papilla, and the neural crest is specific to vertebrates, as are tissues such as enamel.[44]

The radula is used by molluscs for feeding and is sometimes compared rather inaccurately to a tongue. It is a minutely toothed, chitinous ribbon, typically used for scraping or cutting food before the food enters the oesophagus. The radula is unique to molluscs, and is found in every class of mollusc apart from bivalves.

Within the gastropods, the radula is used in feeding by both herbivorous and carnivorous snails and slugs. The arrangement of teeth (also known as denticles) on the radula ribbon varies considerably from one group to another as shown in the diagram on the left.

Predatory marine snails such as the Naticidae use the radula plus an acidic secretion to bore through the shell of other molluscs. Other predatory marine snails, such as the Conidae, use a specialized radula tooth as a poisoned harpoon. Predatory pulmonate land slugs, such as the ghost slug, use elongated razor-sharp teeth on the radula to seize and devour earthworms. Predatory cephalopods, such as squid, use the radula for cutting prey.

In most of the more ancient lineages of gastropods, the radula is used to graze by scraping diatoms and other microscopic algae off rock surfaces and other substrates. Limpets scrape algae from rocks using radula equipped with exceptionally hard rasping teeth.[50] These teeth have the strongest known tensile strength of any biological material, outperforming spider silk.[50] The mineral protein of the limpet teeth can withstand a tensile stress of 4.9 GPa, compared to 4 GPa of spider silk and 0.5 GPa of human teeth.[51]

 

Fossilization and taphonomy

[edit]

Because teeth are very resistant, often preserved when bones are not,[52] and reflect the diet of the host organism, they are very valuable to archaeologists and palaeontologists.[53] Early fish such as the thelodonts had scales composed of dentine and an enamel-like compound, suggesting that the origin of teeth was from scales which were retained in the mouth. Fish as early as the late Cambrian had dentine in their exoskeletons, which may have functioned in defense or for sensing their environments.[54] Dentine can be as hard as the rest of teeth and is composed of collagen fibres, reinforced with hydroxyapatite.[54]

Though teeth are very resistant, they also can be brittle and highly susceptible to cracking.[55] However, cracking of the tooth can be used as a diagnostic tool for predicting bite force. Additionally, enamel fractures can also give valuable insight into the diet and behaviour of archaeological and fossil samples.

Decalcification removes the enamel from teeth and leaves only the organic interior intact, which comprises dentine and cementine.[56] Enamel is quickly decalcified in acids,[57] perhaps by dissolution by plant acids or via diagenetic solutions, or in the stomachs of vertebrate predators.[56] Enamel can be lost by abrasion or spalling,[56] and is lost before dentine or bone are destroyed by the fossilisation process.[57] In such a case, the 'skeleton' of the teeth would consist of the dentine, with a hollow pulp cavity.[56] The organic part of dentine, conversely, is destroyed by alkalis.[57]

See also

[edit]
  • Animal tooth development
  • Dragon's teeth (mythology)

References

[edit]
  1. ^ a b c Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 300–310. ISBN 978-0-03-910284-5.
  2. ^ Tummers M, Thesleff I (March 2003). "Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species". Development. 130 (6): 1049–57. doi:10.1242/dev.00332. PMID 12571097.
  3. ^ Hunt AM (1959). "A description of the molar teeth and investing tissues of normal guinea pigs". J. Dent. Res. 38 (2): 216–31. doi:10.1177/00220345590380020301. PMID 13641521. S2CID 45097018.
  4. ^ a b Nasoori, Alireza (2020). "Tusks, the extra-oral teeth". Archives of Oral Biology. 117: 104835. doi:10.1016/j.archoralbio.2020.104835. PMID 32668361. S2CID 220585014.
  5. ^ McCOLLUM, MELANIE; SHARPE, PAUL T. (July 2001). "Evolution and development of teeth". Journal of Anatomy. 199 (1–2): 153–159. doi:10.1046/j.1469-7580.2001.19910153.x. PMC 1594990. PMID 11523817.
  6. ^ Kaplan, Matt (October 16, 2013). "Fossil scans reveal origins of teeth". Nature. doi:10.1038/nature.2013.13964 – via www.nature.com.
  7. ^ Harper, Douglas (2001–2021). "tooth | Origin and meaning of tooth". Online Etymology Dictionary.
  8. ^ Jheon, Andrew H (2012). "From molecules to mastication: the development and evolution of teeth". Wiley Interdiscip Rev Dev Biol. 2 (2): 165–182. doi:10.1002/wdev.63. PMC 3632217. PMID 24009032.
  9. ^ Sharpe, P. T. (2001). "Fish scale development: Hair today, teeth and scales yesterday?". Current Biology. 11 (18): R751 – R752. Bibcode:2001CBio...11.R751S. doi:10.1016/S0960-9822(01)00438-9. PMID 11566120. S2CID 18868124.
  10. ^ Jennifer Viegas (June 24, 2015). "First-known teeth belonged to fierce fish". ABC Science. Retrieved June 28, 2015.
  11. ^ Shoshani 2002, p. 619
  12. ^ Hale, FA (2009). "Dental caries in the dog". Can. Vet. J. 50 (12): 1301–4. PMC 2777300. PMID 20190984.
  13. ^ "Types of Teeth, Dental Anatomy & Tooth Anatomy | Colgate®". www.colgate.com. Archived from the original on 2017-11-19. Retrieved 2017-11-19.
  14. ^ "Common Characteristics Of Whale Teeth". Archived from the original on 4 September 2011. Retrieved 18 July 2014.
  15. ^ "Everything you need to know about teeth". NHS Scotland. Retrieved 5 May 2020.
  16. ^ "Gummed Out: Young Horses Lose Many Teeth, Vet Says". Archived from the original on 8 July 2014. Retrieved 6 July 2014.
  17. ^ a b Patricia Pence (2002). Equine Dentistry: A Practical Guide. Baltimore: Lippincott Williams & Wilkins. ISBN 978-0-683-30403-9.
  18. ^ Al Cirelli. "Equine Dentition" (PDF). University of Nevada Reno. SP-00-08. Retrieved 7 June 2010.
  19. ^ Maurice Burton; Robert Burton (2002). International Wildlife Encyclopedia. Marshall Cavendish. p. 769. ISBN 978-0-7614-7266-7.
  20. ^ Bram, L. et al. MCMLXXXIII. Elephants. Funk & Wagnalls New Encyclopedia, Volume 9, p. 183. ISBN 0-8343-0051-6
  21. ^ "Dental Anatomy & Care for Rabbits and Rodents".
  22. ^ Brown, Susan. Rabbit Dental Diseases Archived 2007-10-14 at the Wayback Machine, hosted on the San Diego Chapter of the House Rabbit Society Archived 2007-10-13 at the Wayback Machine. Page accessed April 9, 2007.
  23. ^ Ryšavy, Robin. Hay & Dental Health, hosted by the Missouri House Rabbit Society-Kansas City. Page accessed January 2, 2024.
  24. ^ a b Cox, Philip; Hautier, Lionel (2015). Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press. p. 482. ISBN 9781107044333.
  25. ^ Caceci, Thomas. Veterinary Histology with subtitle "Digestive System: Oral Cavity" found here Archived 2006-04-30 at the Wayback Machine.
  26. ^ Gomes, J.r.; Omar, N.f.; Do Carmo, E.r.; Neves, J.s.; Soares, M.a.m.; Narvaes, E.a.; Novaes, P.d. (30 April 2013). "Relationship Between Cell Proliferation and Eruption Rate in the Rat Incisor". The Anatomical Record. 296 (7): 1096–1101. doi:10.1002/ar.22712. ISSN 1932-8494. PMID 23629828. S2CID 13197331.
  27. ^ Martin, Thomas (September 1999). "Evolution of Incisor Enamel Microstructure in Theridomyidae (Rodentia)". Journal of Vertebrate Paleontology. 19 (3): 550. Bibcode:1999JVPal..19..550M. doi:10.1080/02724634.1999.10011164.
  28. ^ a b Tummers M and Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development (2003). 130(6):1049-57.
  29. ^ a b AM Hunt. A description of the molar teeth and investing tissues of normal guinea pigs. J Dent Res. (1959) 38(2):216-31.
  30. ^ Shoshani, J., ed. (2000). Elephants: Majestic Creatures of the Wild. Checkmark Books. ISBN 0-87596-143-6.
  31. ^ Best, Robin (1984). Macdonald, D. (ed.). The Encyclopedia of Mammals. New York: Facts on File. pp. 292–298. ISBN 0-87196-871-1.
  32. ^ The Permanent Canine Teeth, hosted on the University of Illinois at Chicago website. Page accessed February 5, 2007.
  33. ^ Underwood, Charlie; Johanson, Zerina; Smith, Moya Meredith (November 2016). "Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns". Royal Society Open Science. 3 (11): 160385. Bibcode:2016RSOS....360385U. doi:10.1098/rsos.160385. ISSN 2054-5703. PMC 5180115. PMID 28018617. S2CID 12821592.
  34. ^ Fraser, Gareth J.; Thiery, Alex P. (2019), Underwood, Charlie; Richter, Martha; Johanson, Zerina (eds.), "Evolution, Development and Regeneration of Fish Dentitions", Evolution and Development of Fishes, Cambridge: Cambridge University Press, pp. 160–171, doi:10.1017/9781316832172.010, ISBN 978-1-107-17944-8, S2CID 92225621, retrieved 2022-10-22
  35. ^ Rücklin, Martin; King, Benedict; Cunningham, John A.; Johanson, Zerina; Marone, Federica; Donoghue, Philip C. J. (2021-05-06). "Acanthodian dental development and the origin of gnathostome dentitions". Nature Ecology & Evolution. 5 (7): 919–926. Bibcode:2021NatEE...5..919R. doi:10.1038/s41559-021-01458-4. hdl:1983/27f9a13a-1441-410e-b9a7-116b42cd40f7. ISSN 2397-334X. PMID 33958756. S2CID 233985000.
  36. ^ Burrow, Carole (2021). Acanthodii, Stem Chondrichthyes. Verlag Dr. Friedrich Pfeil. ISBN 978-3-89937-271-7. OCLC 1335983356.
  37. ^ Andreev, Plamen S.; Sansom, Ivan J.; Li, Qiang; Zhao, Wenjin; Wang, Jianhua; Wang, Chun-Chieh; Peng, Lijian; Jia, Liantao; Qiao, Tuo; Zhu, Min (September 2022). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. Bibcode:2022Natur.609..964A. doi:10.1038/s41586-022-05166-2. ISSN 1476-4687. PMID 36171375. S2CID 252569771.
  38. ^ Pough, Harvey. Vertebrate Life. 9th Ed. Boston: Pearson Education, Inc., 2013. 211-252. Print.
  39. ^ Kardong, Kenneth (1995). Vertebrate: Comparative Anatomy, Function, Evolution. New York: McGraw-HIll. pp. 215–225. ISBN 9780078023026.
  40. ^ Xiong, Jianli (2014). "Comparison of vomerine tooth rows in juvenile and adult Hynobius guabangshanensis". Vertebrate Zoology. 64: 215–220.
  41. ^ Poole, D. F. G. (January 1961). "Notes on Tooth Replacement in the Nile Crocodile Crocodilus niloticus". Proceedings of the Zoological Society of London. 136 (1): 131–140. doi:10.1111/j.1469-7998.1961.tb06083.x.
  42. ^ Hersher, Rebecca (May 2, 2018). "How Did Birds Lose Their Teeth And Get Their Beaks? Study Offers Clues". NPR.
  43. ^ Field, Daniel J.; Hanson, Michael; Burnham, David; Wilson, Laura E.; Super, Kristopher; Ehret, Dana; Ebersole, Jun A.; Bhullar, Bhart-Anjan S. (May 31, 2018). "Complete Ichthyornis skull illuminates mosaic assembly of the avian head". Nature Vol 557, pp 96 - 100.
  44. ^ a b Kardong, Kenneth V. (1995). Vertebrates: comparative anatomy, function, evolution. McGraw-Hill. pp. 55, 57. ISBN 978-0-697-21991-6.
  45. ^ "Ancylostoma duodenale". Nematode.net Genome Sequencing Center. Archived from the original on 2008-05-16. Retrieved 2009-10-27.
  46. ^ Roberts, Larry S., and John Janovy, Jr. Foundations of Parasitology. Seventh ed. Singapore: McGraw-Hill, 2006.
  47. ^ Brian Payton (1981). Kenneth Muller; John Nicholls; Gunther Stent (eds.). Neurobiology of the Leech. New York: Cold Spring Harbor Laboratory. pp. 27–34. ISBN 978-0-87969-146-2.
  48. ^ Wells MD, Manktelow RT, Boyd JB, Bowen V (1993). "The medical leech: an old treatment revisited". Microsurgery. 14 (3): 183–6. doi:10.1002/micr.1920140309. PMID 8479316. S2CID 27891377.
  49. ^ Ruppert, E.E.; Fox, R.S.; Barnes, R.D. (2004). "Lophoporata". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 829–845. ISBN 978-0-03-025982-1.
  50. ^ a b Asa H. Barber; Dun Lu; Nicola M. Pugno (18 February 2015), "Extreme strength observed in limpet teeth", Journal of the Royal Society Interface, 12 (105): 20141326, doi:10.1098/rsif.2014.1326, PMC 4387522, PMID 25694539
  51. ^ Zachary Davies Boren (18 February 2015). "The strongest materials in the world: Limpet teeth beats record resistance of spider silk". The Independent. Retrieved 20 February 2015.
  52. ^ Taphonomy: A Process Approach. Ronald E. Martin. Illustrated edition. Cambridge University Press, 1999. ISBN 978-0-521-59833-0
  53. ^ Towle, Ian; Irish, Joel D.; De Groote, Isabelle (2017). "Behavioral inferences from the high levels of dental chipping in Homo naledi". American Journal of Physical Anthropology. 164 (1): 184–192. doi:10.1002/ajpa.23250. PMID 28542710. S2CID 24296825. Retrieved 2019-01-09.
  54. ^ a b Teaford, Mark F and Smith, Moya Meredith, 2007. Development, Function and Evolution of Teeth, Cambridge University Press. ISBN 978-0-521-03372-5, Chapter 5.
  55. ^ Lee, James J.-W.; Constantino, Paul J.; Lucas, Peter W.; Lawn, Brian R. (2011-11-01). "Fracture in teeth—a diagnostic for inferring bite force and tooth function". Biological Reviews. 86 (4): 959–974. doi:10.1111/j.1469-185x.2011.00181.x. ISSN 1469-185X. PMID 21507194. S2CID 205599560.
  56. ^ a b c d Fisher, Daniel C (1981). "Taphonomic Interpretation of Enamel-Less Teeth in the Shotgun Local Fauna (Paleocene, Wyoming)". Museum of Paleontology Contributions, the University of Michigan. 25 (13): 259–275. hdl:2027.42/48503.
  57. ^ a b c Fernandez-Jalvo, Y.; Sanchez-Chillon, B.; Andrews, P.; Fernandez-Lopez, S.; Alcala Martinez, L. (2002). "Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition" (PDF). Archaeometry. 44 (3): 353–361. doi:10.1111/1475-4754.t01-1-00068.

Sources

[edit]
  • Shoshani, Jeheskel (2002). "Tubulidentata". In Robertson, Sarah (ed.). Encyclopedia of Life Sciences. Vol. 18: Svedberg, Theodor to Two-hybrid and Related Systems. London, UK: Nature Publishing Group. ISBN 978-1-56159-274-6.
[edit]
  • Beach, Chandler B., ed. (1914). "Teeth" . The New Student's Reference Work . Chicago: F. E. Compton and Co.